Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38313254

ABSTRACT

Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.

2.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38277467

ABSTRACT

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Peptides , Proteomics
3.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232138

ABSTRACT

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Subject(s)
Frontotemporal Dementia , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide/genetics
4.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38071756

ABSTRACT

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Subject(s)
Mass Spectrometry , Lipidomics , Pharmaceutical Preparations , Proteomics , Congresses as Topic
5.
J Immunother Cancer ; 11(9)2023 09.
Article in English | MEDLINE | ID: mdl-37758652

ABSTRACT

BACKGROUND: Tumor-specific mutated proteins can create immunogenic non-self, mutation-containing 'neoepitopes' that are attractive targets for adoptive T-cell therapies. To avoid the complexity of defining patient-specific, private neoepitopes, there has been major interest in targeting common shared mutations in driver genes using off-the-shelf T-cell receptors (TCRs) engineered into autologous lymphocytes. However, identifying the precise naturally processed neoepitopes to pursue is a complex and challenging process. One method to definitively demonstrate whether an epitope is presented at the cell surface is to elute peptides bound to a specific major histocompatibility complex (MHC) allele and analyze them by mass spectrometry (MS). These MS data can then be prospectively applied to isolate TCRs specific to the neoepitope. METHODS: We created mono-allelic cell lines expressing one class I HLA allele and one common mutated oncogene in order to eliminate HLA deconvolution requirements and increase the signal of recovered peptides. MHC-bound peptides on the surface of these cell lines were immunoprecipitated, purified, and analyzed using liquid chromatography-tandem mass spectrometry, producing a list of mutation-containing minimal epitopes. To validate the immunogenicity of these neoepitopes, HLA-transgenic mice were vaccinated using the minimal peptides identified by MS in order to generate neoepitope-reactive TCRs. Specificity of these candidate TCRs was confirmed by peptide titration and recognition of transduced targets. RESULTS: We identified precise neoepitopes derived from mutated isoforms of KRAS, EGFR, BRAF, and PIK3CA presented by HLA-A*03:01 and/or HLA-A*11:01 across multiple biological replicates. From our MS data, we were able to successfully isolate murine TCRs that specifically recognize four HLA-A*11:01 restricted neoepitopes (KRAS G13D, PIK3CA E545K, EGFR L858R and BRAF V600E) and three HLA-A*03:01 restricted neoepitopes (KRAS G12V, EGFR L858R and BRAF V600E). CONCLUSIONS: Our data show that an MS approach can be used to demonstrate which shared oncogene-derived neoepitopes are processed and presented by common HLA alleles, and those MS data can rapidly be used to develop TCRs against these common tumor-specific antigens. Although further characterization of these neoepitope-specific murine TCRs is required, ultimately, they have the potential to be used clinically for adoptive cell therapy.


Subject(s)
Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Mice , Animals , Proto-Oncogene Proteins p21(ras) , Antigens, Neoplasm , Histocompatibility Antigens , Receptors, Antigen, T-Cell/genetics , Peptides , Epitopes , Neoplasm Proteins , HLA-A Antigens , ErbB Receptors
6.
Cell Rep Methods ; 3(10): 100593, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37729920

ABSTRACT

Here, we present a standardized, "off-the-shelf" proteomics pipeline working in a single 96-well plate to achieve deep coverage of cellular proteomes with high throughput and scalability. This integrated pipeline streamlines a fully automated sample preparation platform, a data-independent acquisition (DIA) coupled with high-field asymmetric waveform ion mobility spectrometer (FAIMS) interface, and an optimized library-free DIA database search strategy. Our systematic evaluation of FAIMS-DIA showing single compensation voltage (CV) at -35 V not only yields the deepest proteome coverage but also best correlates with DIA without FAIMS. Our in-depth comparison of direct-DIA database search engines shows that Spectronaut outperforms others, providing the highest quantifiable proteins. Next, we apply three common DIA strategies in characterizing human induced pluripotent stem cell (iPSC)-derived neurons and show single-shot mass spectrometry (MS) using single-CV (-35 V)-FAIMS-DIA results in >9,000 quantifiable proteins with <10% missing values, as well as superior reproducibility and accuracy compared with other existing DIA methods.


Subject(s)
Induced Pluripotent Stem Cells , Proteomics , Humans , Proteomics/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Induced Pluripotent Stem Cells/chemistry , Proteome/analysis
7.
Patterns (N Y) ; 4(6): 100741, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37409055

ABSTRACT

High-dimensional data analysis starts with projecting the data to low dimensions to visualize and understand the underlying data structure. Several methods have been developed for dimensionality reduction, but they are limited to cross-sectional datasets. The recently proposed Aligned-UMAP, an extension of the uniform manifold approximation and projection (UMAP) algorithm, can visualize high-dimensional longitudinal datasets. We demonstrated its utility for researchers to identify exciting patterns and trajectories within enormous datasets in biological sciences. We found that the algorithm parameters also play a crucial role and must be tuned carefully to utilize the algorithm's potential fully. We also discussed key points to remember and directions for future extensions of Aligned-UMAP. Further, we made our code open source to enhance the reproducibility and applicability of our work. We believe our benchmarking study becomes more important as more and more high-dimensional longitudinal data in biomedical research become available.

8.
Hong Kong Med J ; 29(5): 432-442, 2023 10.
Article in English | MEDLINE | ID: mdl-37524686

ABSTRACT

INTRODUCTION: Anaemia is a global public health problem among children. However, few studies have examined anaemia prevalence and risk factors among Chinese children of different ages, particularly in poor rural areas. This study investigated these two aspects among children aged 6 to 23 months in poor rural areas of China. METHODS: This cross-sectional study included 1132 children aged 6 to 23 months in three prefectures of the Qinba Mountains area. A finger prick blood test for haemoglobin and anaemia was conducted, along with household surveys of socio-demographic characteristics, illness characteristics, and feeding practices. Multiple linear and logistic regression analyses were used to determine predictors of anaemia. RESULTS: Overall, 42.6% of children in the study displayed anaemia. Children aged 6 to 11 months had the highest anaemia prevalence (53.6%). Anaemia risk factors differed among age-groups and throughout the overall sample. Bivariate and multivariable regression results showed that continued breastfeeding, any history of formula feeding, and consumption of iron-rich or iron-fortified foods were prominent risk factors for anaemia. However, continued breastfeeding and any history of formula feeding had the greatest impact across age-groups (both P<0.05). CONCLUSION: Anaemia remains a severe public health problem among children aged 6 to 23 months in rural China. Healthy feeding practices, nutritional health knowledge, and nutrition improvement projects are needed to reduce the burden of anaemia among children in rural areas of China.


Subject(s)
Anemia , Female , Humans , Child , Infant , Prevalence , Cross-Sectional Studies , Anemia/epidemiology , Risk Factors , Iron , China/epidemiology , Rural Population
10.
Mol Biol Cell ; 34(8): br11, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37163337

ABSTRACT

As an important substrate for cell metabolism, the short-chain fatty acid acetate emerges as a regulator of cell fate and function. However, its role in T-cell survival and its underlying mechanisms remain largely unknown. Here, we demonstrate that acetate modulates T-cell apoptosis via potentiation of α-tubulin acetylation. We further show that acetate treatment effectively increases the expression of the tumor necrosis factor receptor (TNFR) family member CD30 by enhancing its gene transcription. Moreover, CD30 physically associates with and stabilizes the deacetylase HDAC6, which deacetylates α-tubulin to decrease microtubule stability. Proteomic profiling of CD30 knockout (Cd30-/-) T-cells reveals elevated expression of anti-apoptotic BCL2 family proteins and thus promotes T-cell survival via a microtubule-Bcl-2 axis. Taken together, our results demonstrate that acetate is a regulator of T-cell survival by controlling levels of acetylated α-tubulin. This suggests that therapeutic manipulation of acetate metabolism may facilitate optimal T-cell responses in pathological conditions.


Subject(s)
Proteomics , Tubulin , Tubulin/metabolism , Histone Deacetylase 6/metabolism , Cell Survival , T-Lymphocytes/metabolism , Apoptosis Regulatory Proteins/metabolism , Acetates/pharmacology , Fatty Acids, Volatile , Acetylation
11.
Front Aging ; 4: 1191993, 2023.
Article in English | MEDLINE | ID: mdl-37168844

ABSTRACT

Genomic diversity plays critical roles in risk of disease pathogenesis and diagnosis. While genomic variants-including single nucleotide variants, frameshift variants, and mis-splicing isoforms-are commonly detected at the DNA or RNA level, their translated variant protein or polypeptide products are ultimately the functional units of the associated disease. These products are often released in biofluids and could be leveraged for clinical diagnosis and patient stratification. Recent emergence of integrated analysis of genomics with mass spectrometry-based proteomics for biomarker discovery, also known as proteogenomics, have significantly advanced the understanding disease risk variants, precise medicine, and biomarker discovery. In this review, we discuss variant proteins in the context of cancers and neurodegenerative diseases, outline current and emerging proteogenomic approaches for biomarker discovery, and provide a comprehensive proteogenomic strategy for detection of putative biomarker candidates in human biospecimens. This strategy can be implemented for proteogenomic studies in any field of enquiry. Our review timely addresses the need of biomarkers for aging related diseases.

12.
PLoS Biol ; 21(3): e3002028, 2023 03.
Article in English | MEDLINE | ID: mdl-36930682

ABSTRACT

A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Heterogeneous-Nuclear Ribonucleoprotein L , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA , Nerve Tissue Proteins/metabolism
13.
Neuron ; 111(3): 328-344.e7, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36731429

ABSTRACT

The mammalian spinal cord functions as a community of cell types for sensory processing, autonomic control, and movement. While animal models have advanced our understanding of spinal cellular diversity, characterizing human biology directly is important to uncover specialized features of basic function and human pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single-nucleus RNA sequencing with spatial transcriptomics and antibody validation. We identified 29 glial clusters and 35 neuronal clusters, organized principally by anatomical location. To demonstrate the relevance of this resource to human disease, we analyzed spinal motoneurons, which degenerate in amyotrophic lateral sclerosis (ALS) and other diseases. We found that compared with other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, suggesting a specialized molecular repertoire underlying their selective vulnerability. We include a web resource to facilitate further investigations into human spinal cord biology.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Humans , Adult , Amyotrophic Lateral Sclerosis/metabolism , Spinal Cord/metabolism , Motor Neurons/metabolism , Models, Animal , Neuroglia/metabolism , Mammals
14.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747793

ABSTRACT

Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.

15.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168437

ABSTRACT

Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, personalized medicine, systems biology and biomedical applications. By combining MS with different proteomics approaches such as immunopurification MS, immunopeptidomics, and total protein proteomics, researchers can gain insights into protein-protein interactions, immune responses, cellular processes, and disease mechanisms. The application of MS-based proteomics in these areas continues to advance our understanding of protein function, cellular signaling, and complex biological systems. Data analysis for mass spectrometry is a critical process that includes identifying and quantifying proteins and peptides and exploring biological functions for these proteins in downstream analysis. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analysis. ProtPipe provides downstream analysis including identifying differential abundance proteins and peptides, pathway enrichment analysis, protein-protein interaction analysis, and MHC1-peptide binding affinity. ProtPipe generates annotated tables and diagnostic visualizations from statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. ProtPipe is well-documented open-source software and is available at https://github.com/NIH-CARD/ProtPipe , accompanied by a web interface.

16.
Cell Stem Cell ; 29(12): 1685-1702.e22, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459969

ABSTRACT

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cell Differentiation , Gene Editing , Biological Assay
17.
Zhonghua Zhong Liu Za Zhi ; 44(11): 1221-1228, 2022 Nov 23.
Article in Chinese | MEDLINE | ID: mdl-36380672

ABSTRACT

Objective: To investigate the efficacy and safety of liver venous deprivation (LVD) before secondary resection of primary liver cancer. Methods: 56 patients with advanced primary liver cancer who were not suitable for primary resection in Liver Surgery Department of Xinxiang Central Hospital from January 2018 to January 2019 were analyzed retrospectively. They were divided into liver vein deprivation group (LVD group: LVD+ PVE, n=26) and portal vein embolization group (PVE group, n=30). The dynamic changes of liver reserve function and future liver remnant volume (FLR-V), R0 resection rate, surgical complications, postoperative recurrence rate and overall survival rate of two groups before and after LVD/PVE were compared. Results: The success rate of puncture and embolization in LVD group and PVE group was 100%. There were no grade Ⅳ complications, and there was no significant difference of grades Ⅰ, Ⅱ and Ⅲ complications between the groups (P=0.808). The FLR-V of LVD group before embolization, 7, 14 and 21 days after embolization was (493.1±25.8), (673.2±56.1), (779.5±81.6) and (853.3±85.2) cm(3), respectively. The FLR-V of PVE group before embolization, 7, 14 and 21 days after embolization were (502.4±20.1), (688.6±43.9), (656.8±73.7) and (563.5±69.1) cm(3), respectively. There was no significant difference in FLR-V between the two groups before and 7 days after embolization (P>0.05). The FLR-V of LVD group was higher than that of PVE group at 14 and 21 days after embolization (P<0.01). The preparation time of LVD group was (20.4±6.3) days, which was shorter than that of PVE group [(31.5±8.8) days, P=0.045]. The rate of secondary hepatectomy was 92.3% (24/26), which was higher than that of PVE group [70.0% (21/30), P=0.036]. The R0 resection rate was 87.5% (21/24), which was higher than that of the PVE group [57.1% (12/21), P=0.022]. However, there were no significant differences in surgical methods, operation time, intraoperative blood loss, Clavien-Dindo complication grade and length of hospital stay between the two groups (P>0.05). After hepatectomy, the median recurrence time and median survival time of LVD group were 12.6 months and 21.3 months, respectively, which were longer than those of PVE group (9.4 months and 13.5 months, respectively, P<0.01). Conclusions: For patients with advanced liver cancer who are not suitable for primary hepatectomy, preoperative LVD can significantly increase FLR-V, improve the resection rate of secondary surgery, shorten the preparation time of two operations, and do not increase surgical complications. Moreover, patients with LVD can improve the R0 resection rate of secondary surgery. The postoperative recurrence time and overall survival rate of patients with LVD are better than those of patients with PVE, and LVD has a good long-term effect.


Subject(s)
Embolization, Therapeutic , Liver Neoplasms , Humans , Portal Vein , Retrospective Studies , Hepatectomy/methods , Liver/surgery , Liver Neoplasms/surgery , Embolization, Therapeutic/methods , Treatment Outcome
18.
Zhonghua Zhong Liu Za Zhi ; 44(6): 540-549, 2022 Jun 23.
Article in Chinese | MEDLINE | ID: mdl-35754228

ABSTRACT

Objective: To observe the platinum drugs resistance effect of N-acetyltransferase 10 (NAT10) overexpression in breast cancer cell line and elucidate the underlining mechanisms. Methods: The experiment was divided into wild-type (MCF-7 wild-type cells without any treatment) group, NAT10 overexpression group (H-NAT10 plasmid transfected into MCF-7 cells) and NAT10 knockdown group (SH-NAT10 plasmid transfected into MCF-7 cells). The invasion was detected by Transwell array, the interaction between NAT10 and PARP1 was detected by co-immunoprecipitation. The impact of NAT10 overexpression or knockdown on the acetylation level of PARP1 and its half-life was also determined. Immunostaining and IP array were used to detect the recruitment of DNA damage repair protein by acetylated PARP1. Flow cytometry was used to detect the cell apoptosis. Results: Transwell invasion assay showed that the number of cell invasion was 483.00±46.90 in the NAT10 overexpression group, 469.00±40.50 in the NAT10 knockdown group, and 445.00±35.50 in the MCF-7 wild-type cells, and the differences were not statistically significant (P>0.05). In the presence of 10 µmol/L oxaliplatin, the number of cell invasion was 502.00±45.60 in the NAT10 overexpression group and 105.00±20.50 in the NAT10 knockdown group, both statistically significant (P<0.05) compared with 219.00±31.50 in wild-type cells. In the presence of 10 µmol/L oxaliplatin, NAT10 overexpression enhanced the binding of PARP1 to NAT10 compared with wild-type cells, whereas the use of the NAT10 inhibitor Remodelin inhibited the mutual binding of the two. Overexpression of NAT10 induced PARP1 acetylation followed by increased PARP1 binding to XRCC1, and knockdown of NAT10 expression reduced PARP1 binding to XRCC1. Overexpression of NAT10 enhanced PARP1 binding to LIG3, while knockdown of NAT10 expression decreased PARP1 binding to LIG3. In 10 µmol/L oxaliplatin-treated cells, the γH2AX expression level was 0.38±0.02 in NAT10 overexpressing cells and 1.36±0.15 in NAT10 knockdown cells, both statistically significant (P<0.05) compared with 1.00±0.00 in wild-type cells. In 10 µmol/L oxaliplatin treated cells, the apoptosis rate was (6.54±0.68)% in the NAT10 overexpression group and (12.98±2.54)% in the NAT10 knockdown group, both of which were statistically significant (P<0.05) compared with (9.67±0.37)% in wild-type cells. Conclusion: NAT10 overexpression enhances the binding of NAT10 to PARP1 and promotes the acetylation of PARP1, which in turn prolongs the half-life of PARP1, thus enhancing PARP1 recruitment of DNA damage repair related proteins to the damage sites, promoting DNA damage repair and ultimately the survival of breast cancer cells.


Subject(s)
Breast Neoplasms , N-Terminal Acetyltransferases , Organoplatinum Compounds , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , MCF-7 Cells , N-Terminal Acetyltransferases/metabolism , Organoplatinum Compounds/pharmacology , Oxaliplatin/pharmacology , X-ray Repair Cross Complementing Protein 1
19.
Hong Kong Med J ; 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35718921

ABSTRACT

INTRODUCTION: Gestational age at delivery is reportedly associated with cognitive and non-cognitive development in early childhood. Delivery at an earlier full-term gestational age has been associated with an increased rate of caesarean section (C-section) delivery; the high rate of C-section delivery in China implies that the rate of medically unnecessary C-section delivery is also high. This study investigated the relationships of medically unnecessary C-section delivery with full-term gestational age and early childhood development in rural China. METHODS: We conducted a survey of 2765 children (aged 5-24 months) who resided in 22 national designated poverty counties. Primary caregivers were interviewed to collect information regarding child and household characteristics (including the child's gestational age), each child's delivery method, and reasons for C-section delivery (if applicable). The children were assessed using the Bayley Scales of Infant Development. Developmental outcomes were compared among gestational age-groups; regression analyses were used to assess relationships among medically unnecessary C-section delivery, gestational age, and developmental outcomes. RESULTS: Overall, 56.2% of children were born at ≤39 weeks of gestation. Among C-section deliveries, 13.1% were medically necessary and >40% could clearly be classified as medically unnecessary. Repeat C-section was the most common reason given for medically unnecessary C-section delivery. For each 1-week increase in full-term gestational age, cognition scale scores increased by 0.62 points (P<0.01), language scale scores increased by 0.84 points (P<0.01), and motor scale scores increased by 0.55 points (P<0.05). Medically unnecessary Csection delivery was significantly associated with lower full-term gestational age. CONCLUSION: Higher full-term gestational age was significantly associated with better childhood developmental outcomes, indicating that medically unnecessary C-section delivery may negatively influence early childhood development.

20.
Nature ; 603(7899): 131-137, 2022 03.
Article in English | MEDLINE | ID: mdl-35197628

ABSTRACT

Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Alternative Splicing , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Codon, Nonsense , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Nerve Tissue Proteins , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...